SIMPLE GRID-TIED SOLAR

Simple grid-tied solar installations can offset purchased electricity on public properties such as wastewater treatment facilities, city halls or libraries, etc. These systems are by far the most common solar application deployed by public and private entities.

MODEL SOLAR APPLICATIONS

- 1. SIMPLE GRID-TIED SOLAR
- 2. SOLAR ON LANDFILLS OR OTHER UNDERUTILIZED SITES
- 3. SOLAR ON SHADING STRUCTURES
- 4. GRID-TIED SOLAR WITH ENERGY STORAGE
- 5. MOBILE SOLAR WITH ENERGY STORAGE

Solar and energy storage applications can provide energy, capacity, shade, mobility, resiliency and other benefits to local communities. The North Central Texas Council of Governments (NCTCOG), with support from the Texas State Energy Conservation Office (SECO), identified a need for efficient approaches to evaluating solar and energy storage costs and benefits. This fact sheet, developed by Frontier Associates, presents information and analysis about one of five model solar applications likely to be of interest to local government officials. Frontier also produced a detailed report and Microsoft Excel-based financial pro forma templates that can be customized and applied to

specific projects under consideration. All of this information may be obtained at www.GoSolarTexas.org.

CLOSE UP

FIRE STATION #6 IN MCKINNEY

An example simple grid-tied solar energy system is the 52 kWdc solar array at Fire Station #6 in McKinney. The system produces an estimated 137,000 kWh of electricity annually, about 50 percent of the Fire Station's annual energy needs.

This project was funded in part by a grant through the Texas State Energy Conservation Office. It consists of 222 polycrystalline solar modules, rated at 235 watts each, installed on 3 different roof surfaces. The panels are attached to the roof seam utilizing clamps that allow the modules to be attached to the roof without making penetrations. It utilizes multiple string inverters due to limited space for a large centralized inverter, and includes a web-based monitoring system that provides real time energy production data through a standard web browser.

BENEFIT-COST ANALYSIS

MODELED APPLICATION

200 kWdc on a public facility in Fort Worth, rooftop solar directly purchased by local government

ASSUMED COST, RATES AND SYSTEM SPECIFICATIONS

Deal Structure

Local government owned, directly purchased without financing utilizing available utility incentive. System located in Fort Worth.

Solar System Specifications

200 kWdc rooftop solar array oriented due south at 20 degree tilt. Estimated life 30 years.

Storage Specifications No energy storage

Installed Cost Total installed PV system cost \$500,000 Utility incentive of \$150,000 No federal tax credit or other grants Net installed cost \$350,000

Estimated Annual Operating Costs \$3,986 in year 1, escalated at 1.5% per year

Site Loads and Excess Energy

10% of solar energy exported to the grid 12% of system capacity contributes to demand charge reduction

Site Electric Bill Rates

Charge for energy inflows: \$0.08/kWh Credit for energy outflows: \$0.08/kWh Demand charge: \$5/kW Annual escalation rate: 1.5%

Direct Financial Costs Modeled Capital and operating costs

Direct Financial Benefits Modeled Electric bill energy and demand savings

Additional Community Impacts

Local jobs and economic development Avoided air emissions (CO₂, NO_x, SO₂) Reduced risk/exposure to changes in electricity rates Increased public awareness This fact sheet shows inputs and results from a benefit-cost model designed to illustrate current project economics for a selected solar application. Local government stakeholders may download the financial pro forma model and customize it to meet the specific requirements of projects being considered for their communities. In the hypothetical example modeled here, technical specifications, costs, and utility rates approximate current pricing in Texas at the time of original publication but do not represent any specific site or installed system.

ANNUAL ENERGY PRODUCTION - 299,993 kWh/year

KEY FINANCIAL ANALYSIS METRICS

CASH FLOWS OVER TIME

ADDITIONAL COMMUNITY IMPACTS

Sponsored by

Available at

Produced by

© 2016 North Central Texas Council of Government